We use a holographic model of quantum chromodynamics to extract the equation of state (EoS) for the cold nuclear matter of moderate baryon density. This model is based on the Sakai-Sugimoto model in the deconfined Witten’s geometry with the additional point-like D4-brane instanton configuration as the holographic baryons. Our EoS takes the following doubly-polytropic form: \[\epsilon = 2.629A^{-0.192}p^{1.192} + 0.131A^{0.544}p^{0.456} \] with \(A \) a tunable parameter of order \(10^{-1} \), where \(\epsilon \) and \(p \) are the energy density and pressure, respectively. The sound speed satisfies the causality constraint and breaks the sound barrier. We solve the Tolman-Oppenheimer-Volkoff equations for the compact stars. We reach the reasonable compactness for the proper choices of \(A \). Based on these configurations we further calculate the tidal deformability of the single and binary stars. We find our results agree with the inferred values of LIGO/Virgo data analysis for GW170817.