Deformed compact objects in general relativity and beyond

Guilherme Raposo, Paolo Pani, Roberto Emparan

1 Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy
2 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain and
3 Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain

Einstein’s theory of general relativity predicts that the only stationary configuration of an isolated black hole (BH) is the Kerr spacetime, which has a unique multipolar structure and a spherical shape when non-spinning. This simplicity of BHs is in striking contrast with other models of compact objects which can have a non-trivial multipolar structure such as neutron stars (NSs) and objects inspired by semiclassical and quantum gravity. In this talk, I will present an extension to the Hartle-Thorne formalism that relaxes the assumption of equatorial symmetry and includes deformations induced by multipole moments higher than the spin, thus providing a more general parametrization for deformed compact objects. Within this framework, I will show that these multipole moments must approach the corresponding Kerr values as the compactness increases. I will discuss NSs with intrinsic quadrupole moments, which provide a more accurate description for stellar remnants. These new intrinsic deformations are significant for gravitational-wave parameter estimation, for the electromagnetic signal from accreting NSs, and for tests of the nature of compact objects.


This abstract may also be applicable to the B3: “Approximations, perturbation theory, and their applications” session.