Binary Hybrid Star Mergers and the Phase Diagram of Quantum Chromodynamics

Matthias Hanauske¹,², Luke Bovard¹,², Glòria Montaña³, Laura Tolós¹,²,⁴,⁵, Elias R. Most¹, L. Jens Papenfort¹, Luciano Rezzolla¹,² and Horst Stöcker¹,²,⁶

¹ Institut für Theoretische Physik, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
² Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt, Germany
³ Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
⁴ Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans, 08193, Barcelona, Spain
⁵ Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
⁶ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

The detection of a gravitational wave (GW170817) from a binary compact star merger by the LIGO/VIRGO collaboration marked the beginning of a new era in observational astrophysics. With the use of the observed tidal deformations of the two compact stars the equation of state (EOS) of elementary matter could be severely constrained. The possible appearance of a transition from confined hadronic to deconfined quark matter (hadron-quark phase transition, HQPT), and the formation of regions of deconfined quark matter in the interior of a compact star merger product will be in the focus of this talk. The temperature and density structure of a neutron star merger product and the evolution of hot and dense matter inside the produced hypermassive/supramassive neutron star (HMNS/SMNS) advises an incorporation of a HQPT in the EOS [1, 2]. The occurrence of hot temperature regions and their spatial location is closely connected with the rotational properties of the HMNS/SMNS [3]. Additionally, the possibility of a viscousless superfluid quark phase might change the overall properties as viscous dissipation and energy transport can play a significant role in the survival time of the post-merger object [4]. Binary hybrid star mergers represent therefore optimal astrophysical laboratories to investigate the phase structure of quantum chromodynamics (QCD) and in addition with the observations from heavy-ion collisions will possibly provide a conclusive picture on the QCD phase structure at high density and temperature [5]. The results of numerical simulations of binary hybrid star mergers will be presented, where a strong HQPT has been implemented in the EOS. Especially, within an EOS that includes the possibility of a twin star behavior, the astrophysical observables of a HQPT might be observable by future detection of compact star merger events [6].

References


