Constraining the fraction of compact dark matter from gravitational lensing of gravitational waves

A. Ganguly, S. Basak, K. Haris, A. K. Mehta, P. Ajith
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India

S. Kapadia
Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

apratim.ganguly@icts.res.in

Abstract

Massive astrophysical compact halo objects (MACHOs) are viable compact dark matter (DM) candidates, the presence of which in the interstellar medium will lead to lensing of electromagnetic (EM)/gravitational-wave (GW) signals. Various EM lensing searches have constrained the DM density fraction, f_{DM}, in the form of MACHOs better than $f_{DM} < 10^5$ in the mass range $< 10^{-16} M_\odot$ and $> 10^5 M_\odot$. On the other hand, LIGO-Virgo detectors ($10 Hz < f < 100 Hz$) are well suited to probe MACHOs in the mass range $10^{10} M_\odot$ via GW lensing. The lensed lens waveform will have a frequency dependent magnification/demagnification in the wave-optics limit ($\lambda_{GW} \sim R_{\text{Sch}}$), which is true for MACHOs. In this talk, we will discuss how the search of lensing signature in GW events observed by LIGO-Virgo can be used to put better constraints on f_{DM}.