Prospects for gravitational wave astronomy with next generation large-scale pulsar timing arrays

Yan Wang,1,* Soumya Mohanty,2 and Yi-Qian Qian2

1MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2Center for Gravitational Wave Astronomy and Department of Physics and Astronomy, University of Texas Rio Grande Valley, 1 West University Boulevard, Brownsville, TX 78520, USA

(Dated: March 15, 2019)

Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries. Distance reach of individual binaries based on the optimized observation scheme and the relevant data analysis challenges and possible solutions will be discussed for the future PTAs.

* ywang12@hust.edu.cn