Test of the Gravitational Inverse-Square-Law at the Sub-millimeter Range with larger test masses and 32-fold symmetric attractor

An-Bin Du,1 Wen-Hai Tan,1 Cheng-Gang Shao,1 Shan-Qing Yang,1,* and Jun Luo1,2

1MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
2TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, P. R. China.

Since a lot of speculations predict the violations of the gravitational Inverse-Square Law (ISL) at the short range, it is important to test the ISL with high precision experiments. We have been testing the ISL since 2000 [1–3], and gave a strongest limit at 70–300 μm range with dual modulation and compensation in HUST-2016. To improve the experiment result further more, we have designed new torsion pendulum and attractor, as shown in Fig. 1, and hope to give a stronger limit on α at the sub-millimeter range.

FIG. 1. The left figure shows the new design of the pendulum and attractor. The right figure shows the experiments constraints on Yukawa violation of the Newtonian 1/r law. The shaded region is excluded at a 95% confidence level; the dashed red line shows the target of this work; light lines show various theoretical predictions summarized in [4].

The most important improvement is that the design of new torsion balance with "disk-shaped", which has larger area and thicker test masses. The Yukawa force between test masses and source masses is 10 times larger than HUST-16. Then we increase the attractor from 8-fold to 32-fold azimuthal symmetry. The signal frequency is further away from the fundamental frequency of the rotary stage in HUST-16. We also add compensation masses below the test masses and source masses to achieve a "null" experiment.

Our target is shown in Fig. 1, and we expect to give a more stringent limit on α at the range of 30–800 μm, and improve the previous bounds by up to a factor about 20 at the length scale of 70 μm.

* E-mail: ysq2011@hust.edu.cn