The interior of a binary black-hole merger

Daniel Pook-Kolb1,2, Ofek Birnholtz3, Badri Krishnan1,2, and Erik Schnetter4,5,6

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstr. 38, 30167 Hannover, Germany
2Leibniz Universität Hannover, 30167 Hannover, Germany
3Center for Computational Relativity and Gravitation, Rochester Institute of Technology, 170 Lomb Memorial Drive, Rochester, New York 14623, USA
4Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
5Physics & Astronomy Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada
6Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA

March 14, 2019

Marginally outer trapped surfaces (MOTSs) are routinely used in numerical simulations of black-hole spacetimes. They are an invaluable tool for locating and characterizing black holes quasilocally in real time while the simulation is ongoing. However, there has been a gap in our understanding of the full binary black-hole merger in terms of MOTSs as these seem to appear and disappear unpredictably.

In this talk I will first show that MOTSs are, in fact, well behaved and that their behavior is predictable and related to the stability operator \cite{1,2}. Using numerical simulations of binary black-hole head-on collisions, we have found strong numerical evidence for the existence of a connected sequence of MOTSs taking us from the two disjoint initial black-hole horizons to the final common horizon in such a merger \cite{3}. A key component is a new phenomenon: the merger of MOTSs in the interior of the newly formed common horizon. The fate of its inner branch, which has previously only been speculated about \cite{4,5}, is revealed using a new numerical method \cite{1} capable of finding even highly distorted non-star-shaped MOTSs.

Finally, I will discuss how a connected history of MOTSs provides a new possibility to tackle an important problem of mathematical relativity, namely the Penrose inequality, in the case of generic astrophysical binary black-hole configurations.

References

\begin{itemize}
 \item \cite{3} D. Pook-Kolb et al. \textit{The interior of a binary black hole merger}. 2019. arXiv: 1903.05626 [gr-qc]
\end{itemize}