Semiclassical stellar hydrostatic equilibrium Julio Arrechea Rodríguez, ¹ Carlos Barceló, ¹ Raúl Carballo-Rubio, ^{2, 3} and Luis J. Garay^{4, 5} ¹ Institute of Astrophysics of Andalusia (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada, Spain ² SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy ³ INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy ⁴ Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, España ⁵ Institute for the Structure of Matter (IEM-CSIC), Serrano 121, 28006 Madrid, Spain Theoretical assumptions about the behaviour of gravitational collapse motivate the search for new forms of stellar equilibrium beyond classical general relativity [1]. In this talk we delve into the semiclassical regime, where the vacuum energy contribution to spacetime curvature gives rise to a plethora of scenarios, all of them avoiding the formation of a horizon. We will start reviewing classical hydrostatic equilibrium for stars composed by a perfect fluid of constant density. Such considerations will guide us in the exploration of the solutions to the semiclassical hydrostatic equilibrium equations [2]. We will describe and explain the various situations one encounters as a function of the compactness of the resulting structure. Although the model here considered is the simplest one can think of, it can serve as a cornerstone for the study of semiclassical stellar models with more realistic equations of state. ^[1] Carlos Barceló, Raúl Carballo-Rubio, and Luis J. Garay. Where does the physics of extreme gravitational collapse reside? *Universe*, 2(2):7, 2016. ^[2] Raúl Carballo-Rubio. Stellar equilibrium in semiclassical gravity. Phys. Rev. Lett., 120(6):061102, 2018.