Round null surfaces in Kerr space-time

Marcos A. Argañaraz and Osvaldo M. Moreschi
Facultad de Matemática Astronomía, Física y Computación (FaMAF),
Universidad Nacional de Córdoba,
Instituto de Física Enrique Gaviola (IFEG), CONICET,
Ciudad Universitaria, (5000) Córdoba, Argentina.

While the Kerr metric has deservedly been one of the most studied exact solutions, there appears to be a peculiar lack of natural null coordinates to describe a dual-null foliation of the space-time, meaning two families of null hypersurfaces intersecting in a two-parameter family of transverse spatial surfaces, such that the horizons are two of the hypersurfaces. We present a new definition for null coordinates, that we call u (out-going) and v (in-going), which are naturally adapted to the horizons. Our definition involves a differential equation which we solve numerically.

In our construction there naturally appear a family of spheres that are parameterized by r_s, which are the intersections of the null coordinates u and v. They can also be characterized in a coordinate independent way, by the intrinsic and extrinsic GHP curvature, given by $K_{\text{Gaussian}} = Q_{\text{GHP}} + \bar{Q}_{\text{GHP}}$ and $K_{\text{Extrinsic}} = i (Q_{\text{GHP}} - \bar{Q}_{\text{GHP}})$, with $Q = \sigma' - \rho' - \Psi_2$ given in terms of the spin coefficients of the GHP formalism. In the figure below, we show the smooth behavior of these curvatures through their numerical computation on a surface characterized by r_s, where (r, θ, ϕ) are in Boyer-Lindquist coordinates and a is the Kerr parameter.

Our work improves several attempts that can be found in the literature. A remarkable one is developed in [Hayward(2004)], where the null hypersurfaces they construct do not include the null geodesics along the axis of symmetry. This is due to the fact that their construction does not give a smooth hypersurface at the poles. In order to compare with our coordinates, from [Hayward(2004)], we consider the null function $u^* = t^* - r^*$. Where the analog to our natural spheres are the intersection of u^* with the Boyer-Lindquist coordinate t; that can be parameterized by r_{sH}. In the following graph one can be seen that for r_{sH} there is a discontinuity in the derivatives at $(\theta = 0)$, while for r_s it is clearly smooth.

Our approach is more related to the work in [Pretorius and Israel(1998)], whose treatment only covers the northern hemisphere, but also their expressions fail to deal with the north pole, and are very difficult tocompute, even numerically.

Our new coordinates gives a new insight and are useful in the study of Kerr solution and the Kerr stability open problem. We plan to use them, in further works of Kerr perturbations.

References