Comparison of various methods to extract ringdown frequency from gravitational wave data

Hiroyuki Nakano,1, Tatsuya Narikawa,2,3, Ken-ichi Oohara,4, Kazuki Sakai,5, Hisa-aki Shinkai,6, Hirota Takahashi,7,8, Takahiro Tanaka,3,9, Nami Uchikata,2,4, Shun Yamamoto,6 and Takahiro S. Yamamoto3,5

1Faculty of Law, Ryukoku University, Kyoto 612-8577, Japan
2Institute for Cosmic Ray Research, The University of Tokyo, Chiba 277-8582, Japan
3Department of Physics, Kyoto University, Kyoto 606-8502, Japan
4Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
5Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, Niigata 940-8532, Japan
6Department of Information Science & Technology, Osaka Institute of Technology, Kita-yama, Hirakata City, Osaka 573-0196, Japan
7Earthquake Research Institute, The University of Tokyo, Tokyo 113-0032, Japan
9Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

The ringdown part of gravitational waves in the final stage of merger of compact objects tells us the nature of strong gravity which can be used for testing the theories of gravity. The ringdown waveform, however, fades out in a very short time with a few cycles, and hence it is challenging for gravitational wave data analysis to extract the ringdown frequency and its damping time scale. We here propose to build up a suite of mock data of gravitational waves to compare the performance of various approaches developed to detect quasi-normal modes from a black hole. In this paper we present our initial results of comparisons of the following five methods: (1) plain matched filtering with ringdown part (MF-R) method, (2) matched filtering with both merger and ringdown parts (MF-MR) method, (3) Hilbert-Huang transformation (HHT) method, (4) autoregressive modeling (AR) method, and (5) neural network (NN) method. After comparing their performance, we discuss our future projects.