Renormalization in curved space-times via a mode-decomposition of the Feynman Green Function

Gabriel Freitas1 and Marc Casals1,2

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil.
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland.

In quantum field theory in curved space-time, an important physical quantity is the renormalized expectation value of the stress-energy tensor (RSET), \(\langle \hat{T}_{\mu\nu} \rangle_{\text{ren}} \), which appears as the source term in the semiclassical Einstein field equation. The renormalization method that is usually implemented in the literature applies to static space-times. However, it does not readily generalize to some other types of space-time, including the important case of Kerr space-time. In this talk, we present a method for renormalization via a mode-decomposition of the Feynman Green Function1, which may be used for more general space-times, such as Kerr space-time. We also show the application of the aforementioned method for the calculation of the RSET in a specific space-time.

References

*gfreitas@cbpf.br
*mcasals@cbpf.br