Holographic Thermodynamics of Accelerating Black Holes

Andrés Anabalón,1 Michael Appels,2 Finnian Gray,3,4 Ruth Gregory,2,3 David Kubizňák,3 Robert B. Mann,4,3 and Ali Övgün5

1Universidad Adolfo Ibáñez; Dep. de Ciencias, Facultad de Artes Liberales - Viña del Mar, Chile.
2Centre for Particle Theory, Durham University, South Road, Durham, DH1 3LE, UK
3Perimeter Institute, 31 Caroline St., Waterloo, Ontario, N2L 2Y5, Canada
4Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
5Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso, Chile

Abstract

We will address a long-standing problem of describing the thermodynamics of an accelerating black hole, concentrating on the special case of slowly accelerating black holes in AdS. The key ingredient of consistent thermodynamics is to ensure that the system is not over-constrained by including the possibility of varying string tensions that are responsible for the acceleration of the black hole. The first law assumes the standard form, with the entropy given by one quarter of the horizon area and other quantities identified by standard methods. The dual energy-momentum tensor can be written as a three-dimensional perfect fluid plus a non-hydrodynamic contribution with a universal coefficient which is given in gauge theory variables. Based on [1] and [2].