Compact objects in Einstein-Cartan theory: the effects of intrinsic spin in celestial bodies

Paulo Luz∗
Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal and
Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Sante Carloni†
Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a
Weyssenhoff like torsion field in the Einstein-Cartan theory. The new set of structure equations
clearly show how the presence of torsion affects the geometry of the space-time, in particular it is
found that torsion directly couples to the magnetic parts of the Weyl tensor rendering them non-
trivial. We study some exact solutions for compact objects with non-null torsion and discuss how
these should be smoothly matched to an exterior space-time. We also extend the analysis for the
Buchdahl limit, showing how the presence of intrinsic spin affects the maximum allowed compactness
of an astrophysical body.

∗ paulo.luz@ist.utl.pt
† sante.carloni@gmail.com