Title: WIENER FILTERING METHOD APPLIED TO VIRGO WEST END BUILDING SEISMOMETER ARRAY

M. Tringali1, T. Bulik1, J. Harms2,3, I. Fiori4, F. Paoletti5, N. Singh1

1Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
2Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
3INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
4European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
5INFN, Sezione di Pisa, I-56127 Pisa, Italy

At low frequencies, below about 20 Hz, the Newtonian noise (NN) affects the sensitivity curve of Advanced LIGO and Virgo detectors and turns to be limiting noise source for future detectors sensitive, as well\cite{1} \cite{2}. There are two main components of NN: the atmosphere NN and the seismic NN. The latter turns to be dominant NN contribution, although recent measurements at Virgo show that the atmosphere can be significant as well\cite{3}.

The first approach to mitigate seismic NN is using Wiener filtering. It is derived from correlation between sensors monitoring surface displacements. In this talk, I will present the results of Wiener filter investigation using seismic data from array deployed at West End building (WEB) of Virgo interferometer.

References
\begin{flushleft}
\end{flushleft}