Constraints on millicharged dark matter and axion-like particles from timing of radio waves

Andrea Caputo, Laura Sberna, Miguel Frías, Diego Blas, Paolo Pani, Lijing Shao, and Wenming Yan

1 Instituto de Física Corpuscular, Universidad de Valencia and CSIC, Edificio Institutos Investigación, Catedrático Jose Beltrán 2, Paterna, 46980 Spain
2 Perimeter Institute, 31 Caroline St N, Ontario, Canada
3 Facultat de Física, Universitat de Barcelona, Martí Franquès 1, 08028 Barcelona, Catalonia, Spain
4 Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
5 Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy.
6 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
7 Xinjiang Astronomical Observatory, CAS, 150 Science 1-Street, Urumqi, Xinjiang, 830011, China

After reviewing the status of dark matter constraints obtained from pulsar radio waves, we derive new constraints on millicharged dark matter and axion-like particles using pulsar timing and fast radio burst observations. For dark matter particles of charge ϵe, the constraint from time of arrival (TOA) of waves is $\epsilon / m_{\text{milli}} \lesssim 10^{-8} \text{eV}^{-1}$, for masses $m_{\text{milli}} \gtrsim 10^{-6} \text{eV}$. For axion-like particles, the polarization of the signals from pulsars yields a bound in the axial coupling $g / m_a \lesssim 10^{-13} \text{GeV}^{-1} / (10^{-22} \text{eV})$, for $m_a \lesssim 10^{-19} \text{eV}$. Both bounds scale as $(\rho / \rho_{\text{DM}})^{1/2}$ for fractions of the total dark matter energy density ρ_{DM}. We make a precise study of these bounds using TOA from several pulsars, FRB 121102 and polarization measurements of PSR J0437−4715. Our results rule out a new region of the parameter space for these dark matter models.