Scattering of scalar, electromagnetic, and gravitational waves from binary systems

Lorenzo Annulli1, Laura Bernard1, Diego Blas2,3, Vitor Cardoso1,3

1 Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST, Universidade de Lisboa - UL, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
2 Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS, UK and
3 Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

The direct detection of gravitational waves crowns decades of efforts in the modelling of sources and of increasing detectors’ sensitivity. With future third-generation Earth-based detectors or space-based observatories, gravitational-wave astronomy will be at its full bloom. Previously brushed-aside questions on environmental or other systematic effects in the generation and propagation of gravitational waves are now begging for a systematic treatment. Here, we study how electromagnetic and gravitational radiation is scattered by a binary system. Scattering cross-sections, resonances and the effect of an impinging wave on a gravitational-bound binary are worked out for the first time. The ratio between the scattered-wave amplitude and the incident wave can be of order 10^{-5} for known pulsars, bringing this into the realm of future gravitational-wave observatories \cite{Annulli2018}. For currently realistic distribution of compact-object binaries, the interaction cross-section is too small to be of relevance.