Causality violating lightlike trips in Gödel’s universe

Brien C. Nolan

Centre for Astrophysics and Relativity, School of Mathematical Sciences,
Dublin City University, Glasnevin, Dublin 9, Ireland.

We revisit the issue of causality violations in Gödel’s universe, restricting to geodesic motions. It is well-known that while there are closed timelike curves in this spacetime, there are no closed causal geodesics. We show further that no observer can send a signal directly to their own past. However, we show that this type of causality violation can be achieved by a system of relays: we prove that from any event P in Gödel’s universe, there is a future-directed lightlike trip - a sequence of future-directed null geodesic segments, laid end to end - which has P as its past and future endpoints. We show that this lightlike trip must contain a minimum of eight geodesic segments. We prove a related general result, that events of a time orientable spacetime are connected by a causal curve if and only if they are connected by a lightlike trip. This provides a means of violating causality in Gödel’s universe without the need for unfeasibly large accelerations. Finally, we consider the motion of a gyroscope on Gödel’s closed timelike curves and argue that this motion is intrinsically contradictory.