Title: Unravelling the effective fluid approach for Modify Gravity and Dark Energy models.

Abstract:
Although the Lambda cold dark matter model (ΛCDM) has become the best phenomenological
description for the late-time accelerating phase of the Universe, the yet unsolved cosmological
constant problem has driven an effort towards alternatives. We will mention two leading
approaches which avoid the introduction of a cosmological constant. On the one hand, Dark
Energy (DE) models where yet unobserved scalar fields would dominate the energy content at
late times, avoiding fine-tuning issues as well as accelerating the Universe. On the other hand,
there are Modified Gravity (MG) models that instead modify the current theory of gravity. We
will demonstrate how to work out solutions to the perturbations equations in MG and DE models
under the sub-horizon approximation. We will see that one can derive analytical solutions for DE
perturbations and test them numerically showing that the quasi-static approximation actually
performs quite well for this kind of models. Using the latter and simple modifications to the
CLASS Boltzmann code, which we call EFCLASS, in conjunction to very accurate analytic
approximations for the background evolution, one can obtain competitive results in a much
simpler and less error-prone approach. We then use the aforementioned models to derive
constraints from the latest cosmological data, including Type Ia supernovae, Baryon Acoustic
Oscillations (BAO), Cosmic Microwave Background (CMB), H(z) and growth-rate data, and find
they are statistically consistent to the ΛCDM model.